Conformal Quaternionic Contact Curvature and the Local Sphere Theorem. La Courbure Conforme D’une Structure De Contact Quaternionienne Et Structures Localment Plates
نویسنده
چکیده
A tensor invariant is defined on a quaternionic contact manifold in terms of the curvature and torsion of the Biquard connection involving derivatives up to third order of the contact form. This tensor, called quaternionic contact conformal curvature, is similar to the Weyl conformal curvature in Riemannian geometry and to the Chern-Moser tensor in CR geometry. It is shown that a quaternionic contact manifold is locally quaternionic contact conformal to the standard flat quaternionic contact structure on the quaternionic Heisenberg group, or equivalently, to the standard 3-sasakian structure on the sphere iff the quaternionic contact conformal curvature vanishes. Un tenseur est défini sur une variété avec une structure de contact quaternionienne en utilisant la courbure et la torsion de la connexion de Biquard. Ce tenseur, appelée la courbure conforme d’une structure de contact quaternionienne, ne dependent que des dérivés de la troisième ordre de form de contact et qui est similaire à la courbure de Weyl dans le cas riemannienne et à le tenseur de Chern-Moser dans la géométrie CR. Il est démontré que une structure de contact quaternionienne est localement conforme à la structure de contact quaternionienne plate sur le groupe de Heisenberg, ou encore, à la structure 3-sasakienne sur la sphère quaternionic si et seulement si la courbure conforme de contact quaternionienne est nulle.
منابع مشابه
Conformal Quaternionic Contact Curvature and the Local Sphere Theorem
Abstract. A curvature-type tensor invariant called quaternionic contact (qc) conformal curvature is defined on a qc manifolds in terms of the curvature and torsion of the Biquard connection. The discovered tensor is similar to the Weyl conformal curvature in Riemannian geometry and to the Chern-Moser invariant in CR geometry. It is shown that a qc manifold is locally qc conformal to the standar...
متن کاملExplicit Quaternionic Contact Structures and Metrics with Special Holonomy
We construct explicit left invariant quaternionic contact structures on Lie groups with zero and non-zero torsion, and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of quaternionic contact manifolds not locally quaternionic contact conformal to the quaternionic sphere. We present a left invariant quaternionic contact structure on a seven dimensio...
متن کاملquaternionic contact structures in dimension 7
The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n− 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be the...
متن کاملQuaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal deformations sending the standard flat torsion-free quaternionic contac...
متن کاملStructures in Dimension 7
The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n − 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be th...
متن کامل